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ABSTRACT

General procedures for computing alloy phase equilibria from ab initio electronic
structure calculations are reviewed and applied to the Al-Li phase diagram. Free energies were
calculated by the cluster variation method (CVM) in the tetrahedron approximation for the fcc and
bce lattices and ordered superstructures. Input was provided by first principles FLAPW
calculations. The computed phase diagram for both stable and metastable structures agrees
remarkably well with the experimental one. :

INTRODUCTION

The exciting possibility now exists of deriving phase diagrams virtually from first
principles. There is value in determining even known phase diagrams by theoretical means alone
since, once reasonable agreement has been achieved, correct thermodynamic functions are
available and predictions can be made concerning equilibrium of stable and metastable phases,
and properties can be predicted. Furthermore, a fundamental understanding of the underlying
physics of the phase relations can be gained. The practical value of the undertaking is further
enhanced when calculated binary phase equilibria are extended to include ternary,
quaternary,...additions. It then becomes possible, in principle, to predict which elements are
likely to stabilize which phases and computer-aided alloy design, or, in the words of Pettifor
{1], "Quantum Engineering" becomes a distinct possibility.

Theory has made great strides in the last ten years or so in three quite distinct areas: (a)
first principles total energy calculations of pure crystals and of simple stoichiometric compounds
can now be performed very accurately thanks to density functional theory, (b) effective pair and
cluster interactions (EPI, ECI) can now be calculated by the Gautier-Ducastelle {2] generalized
perturbation method (GPM), having been implemented on tight-binding (TB) and KKR-CPA
codes; and (c) a reliable statistical thermodynamical model has been developed to calculate
realistic temperature-composition diagrams.

Let us dwell on this latter point. Until fairly recently, the standard free energy functions
used in phase diagram calculations were the mean field, Gorsky-Bragg-Williams, regular of sub-
regular soluton models, method of concentration waves, or zeroth approximation; all of these
methods are basically equivalent. In addition to being numerically inaccurate - transition

temperatures can be off by 100% or more - these models predict the wrong phase diagram.

topology for fcc-based ordering systems and neglect short range order. These deficiencies can
be remedied by use of the cluster variation method (CVM) (3], which was applied for the first
time to phase diagram calculations by Van Baal (4] and by Kikuchi and one of the present
authors [5]. A very complete weatment of the subject has been given recently by Finel (6]. The
choice of free energy models is crucial to the subject matter of this symposium: important high-
temperature alloy phases are ordered superstructures of the fcc lattice (L1, D023...), but
ordering interactions are frustrared on this lattice. Hence, phase equilibrium in such systems, or
metastable L17 in Al-Li, cannot be handled in the zeroth approximation, despite claims to the
contrary. .

The CVM requires, as input, interaction parameters which determine ordering or
clustering reactions occurring in the alloy systems. These interacdons must be defined carefully,
then obtained numerically by means of electronic structure calculations. Thus, the statistical
mechanical model dictates the type of quantum mechanical calculations to be performed. A
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summary of the theoretical concepts will be give in the next two Sections. Application to the Al-
Li system will be given in the final Section.

THE CVM SCHEME

Consider a binary alloy, with atoms A and B occupying N lattice sites. The operator
at site p is defined as being +1 if p is occupied by A, -1 if occupied by B. Any one of 21‘?
configurations is defined by the set of all N operators 6p. Such a description is neither feasible
nor desirable. Instead, only a small set of multisite correlation functions &g are defined by the
ensemble average

é(!. = (0'1 62'")(1 (1)

where the ¢ operators specify the occupations of the points of the cluster o of n sites. It is
shown [7] that the probability p(o) of finding the system in the configuration (o) is given by

p@) = P [1 + X oalal @

a

where the sum is over all possible clusters of points in the crysfal of N points, ¢, denoting the

product of operators inside the bracket in Eq. (1). In Eq. (2), p} is the normalization 2-N. The
basic idea of the CVM is to truncate the summation in Eq. (2) after some maximal cluster, and to
use such truncated expansions in both internal energy and configurational entropy expressions.
‘Usually, only small clusters are manageable: tetrahedron, octahedron, cube... By comparison,
the zeroth approximation truncates after a single lattice point.

The expectation value of the energy can be written as a weighted sum over all
configurations

= 2 PO E©) 3
g
where E(0) is the total energy of the specified configuration. Putting (2) into (3) yields
= JO + 2 Jaéa (4)
a
with
— 0
= pN % E(G) (5)
and
- 0
= o, g 0 E(0) ©)

The energy is thus expressed as a sum of cluster interactions, the Jo, weighted by
corresponding correlations &q. The case of pair interactions is of particular interest:

L E
Ypa) = 22 cp{;tl ogﬂ % %4 Jxa ” z (@) @)

where the last summation is over all configurations having specified ¢ at lattice points p and q.
Equation (7) can be written
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Jpq) = +(Eaa - Ean - Epa + Esp) (8)

where Epj designates the energy of a pair cluster (I, J = A,B) embedded in a completely
disordered average medium. These formulas can be extended to arbitrary clusters.

Often, the energy E is expressed only as a sum of effective pair interaction (EPI) of the
type given by Eq. (8). Itis important to note that these EPI's are not "pair potentials”. Indeed,
by Egs. (7) and (8), we see that each Eyj is in fact an energy for the whole crystal containing a
certain type of pair (cluster). The EPI's (ECI) occur in the expression of the ordering energy (or
Isml%_ energy) and are typically two or three orders of magnitude smaller than the cohesive energy
itse

Despite the fact that ECI's are (small) differences of large numbers, methods have been
developed to evaluate these from electronic structure calculations. Initially, these interactions
were calculated in k-space by the GPM [2] or by the S(2) method of Gyoérffy and Stocks [8],
both methods relying on perturbing the coherent potential (CPA) medium. Later the GPM was
formulated in direct space [9] and found to be equivalent to the embedded cluster method, the
embedding medium being either the single-site CPA [10] or one obtained by configurational
averaging [11,12]. The electronic structure calculations can be carried out either in Tight-
Binding or KKR-CPA schemes.

The configurational entropy is obtained in the CVM approximation by expanding the
exact expression -kg Z p In p where kg is Boltzmann's constant and the sum is over all possible
configurations. An appropriate superposition approximation must be found which converges
rapidly in the logarithms of "partial densities" [7] or cluster concentrations Xq(0), i.e., the
probability of finding cluster a having specified configuration ¢ at equilibrium. The required
expression is

o
S=-kg 270 z Xa(0) In x4(0) 9)

a g

where the first sum extends to all clusters up to the largest one retained in the chosen
approximation and where the second summation is over the configurations of the specified
cluster. The integers Yq are so-called Kikuchi-Barker coefficients whose values are obtained by
simple recursion formulas.

Each cluster (o) concentration can be expressed as a function of all multisite correlations
Z‘, belonging to the cluster & and its subclusters (B), in a manner which exactly parallels that
glven in Eq. (2) for the whole crystal (considered as a supercluster). Since the xq are linear
functions of the correlations § , the free energy functional F = E - TS, with E given by Eq. (4)
and S by Eq. (9), turns out to be an implicit function of the correlations:

= F(éla 52, ) éa; T (10

The concentration dependence is implicit in the multisite correlations and explicit in the average
"point" correlation &; = 1 — 2¢, where ¢ is the concentration of element B in the alloy AB. The
equilibrium free energy is obtained by minimizing F in Eq. (10) with respect to the independent
variables & at given temperature T and composition ¢, or in the grand canonical scheme, the
difference of chemical potentials u = pa — UB.

The calculadon is carried out at various T and ¢ (or 1) for the various lattices and
superstructures of interest, and phase diagrams are derived by constructing common tangents
where appropriate. Not only are the equilibrium phase boundaries calculated, but, through the
equilibrium correlations, states of LRO and SRO are determined as well. Moreover, Fourier
transform methods also provide ordering and clustering spinodals [13] and SRO intensity
(6,14,15].

Experience has shown that thc CVM is a very reliable and general model which in most
cases produces transition temperatures only a few percent off those determined exactly (as in the
2-dimensional Ising model) or by renormalization group or Monte Carlo techniques [6]. Bragg-
Williams methods may suffice for curve fitting purposes, but the CVM (or Monte Carlo
methods) must be used in the context of ab initio calculations.
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ENERGY CALCULATIONS

For given phase ¢, the CVM provides only the "Ising" or "ordering" contribution Fpix
to the total free energy

F? = FY + F? (11)
where the term linear in concentration
F = (1-c) F} + cF¥ (12)
combines the free energies of pure elements A and B:

FF = Ef -TS{, 0 = AorB) (13)

in which the cohesive energy E[q’ and vibrational entropy S,q’ are both considered to be practically
temperature independent. It is essential to include the linear term if CVM free energies of phases
based on different lattices need to be compared.

The parameters required for a complete free energy determination, for given structure or
superstructure @, are thus the following: cohesive energies of pure A, B and effective cluster
interactions for each phase @, for all clusters envisioned, and the configuration-independent
energy J®, which appears in Eq. (4) along with the ECI, J®,. Both Jo and Jy (all &) are
generally concentration dependent but may be regarded as temperature independent. The
vibrational entropy may be estimated by empirical means.

The pure element cohesive energies can be obtained quite accurately by first principles

electronic structure calculations. The alloy energies Jg (©, 12 (c), may be obtained by either of
two rather different procedures: the starting point for one is the fully disordered state, that for the
other are the fully ordered states.

In the first method, the energy of the completely disordered solid solution is calculated
either by the coherent potential approximation (CPA)[16,17] or by configurational averaging
[11,12]. The ECI (EPI) are calculated by the generalized perturbation method (GPM)[2], or by
the embedded cluster method (ECM)[10] or by direct configurational averaging (DCA)[11,12].
In the first two cases, the average medium is the single site CPA, in the third it is a random solid
solution. All of these electronic structure calculations may be performed at absolute zero of
temperature. Thus, a very convenient decoupling of energy and configurational entropy
calculations is achieved: all parameters required as input to the CVM free energies are obtained
by 0 K calculations, the temperature dependence comes in through the correlation functions & by
free energy minimization at various values of T. Prototype phase diagrams were calculated in
this way for hypothetical fcc-based systems by Turchi er al.[18] , for bee systems by Sigli and
Sanchez [19] and by the present authors for the combined fcc-bee-liquid Ti-Rh system [20].

THE Al-Li SYSTEM

In the second method, the so-called Connolly and Willliams method [21], this
decoupling is realized as well. Here, for each lattice, one performs accurate ab initio total
energy calculations of as many stoichiometric ordered superstructures (including pure element) as
there are unknown ECI's required by the CVM approximation chosen. For these perfectly
ordered structures, the correlations & are known so that the linear system (4) can be inverted to

yield the desired sets of J 3’ and Jz. This procedure has been used successfully by Zunger and
co-workers [22,23] and by Terakura and co-workers [24,25].
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Table I. FLAPW results for fcc and bee based structures. The cohesive energy

E..x is defined as the

difference of the energy of one mole of atoms in the solid state and the energy of one mole of atoms in

the infinitely diluted gas state (infinite interatomic distances). The ilibri
' . equilibrium
bulk.modulus are represented by V' and B, respectively.

Sm.lcmrc Ecoﬁ Vo 8
kJ/mole cm 3/mole GPa
Al - fcc 387.164 9.5533 82.198
AlsLi - L1, 342.297 9.4518 70.308
Ale: - L1, 288.765 9.2805 50.409
A{Lx, -Li, 25911 9.7403 28.370
Li - fce 164.108 11.4031 13.642
Al -bec 381.125 9.6068 84.184
AlsLi - DO, 329.299 9.6518 55.844
AlLi - B2 289.027 8.8921 42.091
Alb: -B32 297.167 9.2148 57.750
A{Lx, - DO, 230.244 9.6829 29.640
Li - bee 163.452 11.4387 15.246
10 E (kJ/moie)
5 -
z 003
0 4-FcC s
-5
z ‘-‘2
- 1 - N .
0 a U, 7 00,4
) s
<15 \\\ 82
N\
- 20 - . o
¥ 832
-25%
0 02 04 (oX.] 08 1
Al cu u

molar volume and the

Figure 1. The formation
energy Eform as a function of
composition.  This plot
shows the phase equilibria at
0 K. The circles and squares
correspond to structures
based on the fcc and bcc
lattice, respectively. The
Al3Li - L12 phase is just
below the (solid) line
connecting the Al-fcc and
B32 phases, an indication
that the L1y phase is just
stable at 0 K. The AlL3 ~
L1, phase is far above the
(dashed) line connecting the
Li-fcc and B32 phases,
indicating that this LI;

phase is not stable at 0 K

(nor at other

temperature).

any

The present authors have used this method for calculating phase equilibria in the Al-Li
system (29]. The ab initio total energy computations were performed by the FLAPW method.
In the Al-Li, as in the Ti-Rh system, equilibrium is conditioned by the competition between fcc
and bcc lattices and their respective superstructures. The structures chosen are listed in Table L.
This set suffices since the CVM calculations were performed in the tetrahedron approximation.
For fcc, the nearest-neighbor tetrahedron comprises 4 subclusters; the point, the (first) pair, the

triangle and the tetrahedron itself. An additional calculation is required to obtain the J 6“ term, so
five total energy values are necessary. For bcc, the tetrahedron includes also the second
neighbor pair so that six energy calculations are required. The FLAPW computations were
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performed for each structure for different values of the (cubic) lattice parameter. The energy
values were fitted to a parabola, the minimum of which determined the equilibrium lattice
parameter at 0 K. The curvature at the minimum yielded the bulk modulus B. Table I gives the
calculated equilibrium cohesive energies, molar volume and bulk modulus. Table II compares
calculated values with those determined experimentally . Theoretical and experimental structural
energies and formation energies are also compared.

The structures selected for energy calculations were all the fcc and bec superstructures
stabilized by predominantly nearest neighbor ordering interactions. Thus, there was no a priori
bias in the selection. It is instructive to plot the "formation" energies of these structures as a
function of stoichiometry. This was done in Fig. 1 which is thus the graphical representation of
Table I. Here, the formation energy is defined as the total energy of the structure of interest
minus that of the pure elements in the fcc phase. Thus, in Fig. 1, fcc Al and Li are on a
horizontal straight line at level zero. All fcc-related structures are denoted by circles, the bec-
related structures by squares. The ground states of both Al and Li are predicted to be fcc,
although bce Li has energy only slightly higher than fcc. Actually, Li does transform to a close-
packed structure below about 78 K [26], but becomes bcc at higher temperature because of
vibrational entropy contributions to the free energy. A remarkable feature of the calculation is
that the B32 structure is predicted to be much more stable that the B2 or L1g at ¢ = 1/2
stoichiometry. Indeed, the so called § phase at the center of the Al-Li diagram has the B32
structure. The experimentally determined phase diagram is shown in Fig. 2 [27]. Atc=1/4,an
L1, superstructure is predicted to be just barely stable with respect to a mixture of fcc and B32
phases. At higher temperatures, the L1 is expected to become metastable with respect to that
mixture, as is observed experimentally [28]. In the literature, this phase is denoted by the
symbol §'; we prefer to call it a', since it is a superstructure of fcc, which is designated as « in
Al-Li phase diagrams. Atc = 3/4, itis a bcc superstructure which becomes stable, the DO3. In
reality, "interloper” line compounds are observed on that side of the phase diagram.

Weight Percent Lithium
W 4 %0 e 0™ 00

oc

Temperature

50
Al Atomic Percent Lithium

Figure 2. The Al-Li phase diagram according to an assessment by McAlister {27].
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_ The remarkable prediction of correct ground states augures well for a complete phase
diagram calculaton. The procedure followed is described in detail in the original paper [29], and
can be summarized as follows: As mentioned, the total energy of each structure ¢ at 0 K may be
expressed as a quadratic in volume V

EP(V) = W§ + W7V + W3 V2 (14)

the coefficients W of which may be evaluated numerically from the FLAPW results. Hence, for
each larrice (fcc or bee) and its family of superstructures, the total energy may be written
explicitly in matrix form as

E=WyV (15)

where E is a vector containing the n structure energies E?, W is an 3xn matrix of W‘,p
(i=1,2,3) and V is the vector (1, V, V2]. The Sanchez equation [7] may also be written in
matrix form (with 1 = &p)

E=X] (16)

where X is the (square) matrix of stoichiometric correlations éa and J is the vector of ECI's for
the lartice considered. According to the Connolly and Williams prescription [21], Eq. (15) can
be inverted to yield the required ECT's: E

J=X'E=X'WvV (17)

where Eq. (15) has been used. It is now possible to write down explicit expressions for the
ECT's as a functon of volume

JaW) = 1O + JPV + JP v2 (18)

in which the coefficients J§ (k = 0, 1, 2) are elements of the matrix X-! W. There are as many
equations (18) as there are clusters retained in the CVM energy expression, times the number of-
lattices considered.

T (K)

800 Figure 3. The Al-Li phase
diagram calculated with only
fcc based structures taken into
account. Relaxation effects, as
described in section VI.2.4,

600 - have not been included. The
dotted line represeats the {000]
phase separation spinodal and
the dashed curve indicates the

400 (100) ordering spinodal.

-
200
0
0 0.2 04 08 08 1
AL Cu L
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When expressions (18) are introduced into Eq. (4), the CVM free energy functional
becomes volume dependent, which means that the equilibrium free energy must be obtained by
minimization with respect to both correlation variables g and volume V. The minimization is
commonly carried out by Newton-Raphson iteraton. Note that the Hessian of the successive
linear systems may become singular in which case the thermodynamic phase under consideration
would become unstable with respect to configurational, mechanical or mixed modes [29]. At
each temperature and concentration the minimization thus produces free energies of ordered and
disordered phases along with equilibrium values of all correlations & (hence LRO and SRO) and
of volume V. The common tangent construction determines stable and metastable phase
boundaries.

If only fcc-based equilibria are considered, the phase diagram of Fig. 3 is produced.
Both L1, (metastable &) and L1g phase regions are obtained. The large miscibility gap on the Li
side is caused by elastic effects. Note that absolute values of ordering temperatures are calculated
since absolute values of ECI Jg are determined by Eq. (17) at equilibrium values. The dashed
line is the calculated ordering spinodal [13] for <100> ordering waves. Below this limit of
stability, Cu-Au-type ordering should take place homogeneously. All transitions are first order.

The bce-only phase diagram is shown in Fig. 4. Note that B32 disordering takes place at
a very high temperature. A DOs3 phase is expected at high Li content. At low Li content, the
metastable bce solid solution should spinodally decompose below the indicated dotted line.

T (K)
2500
Figure 4. The bee Al-Li phase
diagram without relaxation.
2000 - The dotted line indicates the
metastable miscibility gap in
the disordered bcc solid
solution.
1500 4
1000 -~
| o 00,
500 - ‘ 3 \
0
O 02 04 06 08 1
AL A CTRE Li

When families of both fcc- and bec- based free energy curves are combined, the phase
diagram of Fig. 5 is obtained. Dashed lines refer to the fcc-only equilibria now seen to relate to
metastable phases. It is imperative to recognize that the diagram of Fig. 5 results from a pure
first principles calculation: the only input parameters were the atomic number Zp; = 3 and
Za1 =13. Although resemblance with the experimental diagram (Fig. 2) may not be
immediately apparent, certain basic features are predicted correctly: a wide fcc solid solution
field on the Al side, very low solubility on the Li side, a central B32 phase persisting to very
high temperatures, and L15 (') Al3Li metastable phase with rather low disordering temperature
(the calculated 500 K is a bit low, ' actually persists to at least 400 “C). The predicted
metastable L1g has not been observed experimentally due to the impossibility of quenching an fcc
phase at such high Li concentrations, only fcc + B32 two-phase equilibrium being accessible.
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T 1K)

2500

Figure 5. The solid-state
part of the Al-Li phase
diagram. Both fcc and bece
based phases have been
included. The fcc based
ordered phases have been
repressed because of the
greater stability of the bce
based structures. The
metastable fcc-based
equilibria are indicated
with dashed lines. The
(100Q] fec ordering spinodal
is denoted with a dotted
line. Note that at this
stage no experimental data
have entered the
computation

2000 -

1500 -

1000 -

500

AL S L

‘Clearly, two additional features are missing from the phase diagram of Fig. 5: the solid-
liquid equilibria and the fcc—bcc allotropic phase transformation on the Li side. To incorporate
these features, some empirical parameters must be introduced. We chose to represent the liquid
free energy curve by a regular solution model with parameters fixed by the melting temperatures
of pure fcc Al, bee Li and B32 congruent melting. Also, a vibrational entropy correction was
introduced in such a way as to produce the close-packed to bcc transition of pure Li at the
observed temperature. The chosen parameters are given elsewhere [29].

T (K)
1500 Figure 6. As figure V1.8 but
now including the empirical
. vibrational-entropy difference -
between fcc and bcc based
LQuio Dhases
1000 -~
FCC .
500 - ...
L12
O . 1 1 I i
0 02 04 0.6 08 1
AL C i
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The complete diagram constructed by combining the first principles calculation (leading to Fig. 5)
and the empirical corrections just described is shown in Fig. 6.. Now the agreement with the
diagram of Fig. 2 is indeed striking. Eutectics are correctly predicted to exist at both Al and Lj
sides and the B32 is shown to melt congruently. The calculated eutectic temperatures are a bit
low but that is caused by our choice of a rather simplistic liquid free energy model. The
"interloper” phases AlLi3 and AlgLig, not being superstructures of either fcc or bee, do not
appear in this computation but the rather similar DO3 may be regarded as representing the actual
intermetallics; the narrow-range DOj3 phase is predicted to form by peritectic reaction, as do the
actual "incoherent"” intermetallics.

DISCUSSION

If the qualitative agreement is good between experimental and theoretical phase diagrams,
thermodynamic values derived from the calculation also may be expected to agree closely with
experimental ones. Tables I and III indicate that this is indeed the case.

In Table II theoretical (FLAPW) and experimental values are compared for cohesive
energies, equilibrium volume, bulk modulus, structural and formation energies. The cohesive
energies of fcc-Al and bec-Li agree remarkably well with sublimation energies (extrapolated to 0
K). Itis then reasonable to assume that calculated cohesive energies of bec-Al and fee-Li are also
accurate, although experimental values are note available, of course. The calculated and
measured equilibrium volumes (Vo) also are in excellent agreement, even for the metastable Al3Li
(o' —L17) phase. Bulk moduli (B) also agree well, particularly when the experimental value is
corrected to 0 K. Cohesive energy differences between fcc and bec pure Al and Li cannot be
measured but can be estimated from the experimental phase diagram in an indirect way [30].
Here, some discrepancies arise; but as pointed out by Miodownik [31], the "experimental" values
may well be rather inaccurate. That is surely the case for Li since the ground state is a close-
packed structure, hence AEfcc-bcc myst be positive, not negative as deduced from the phase
diagrams [32]. The calculated formation energy of B32 falls between experimental ones, and is
in fact closer to one of those values than are the experimental ones to one another.

Table II. A comparison of various physical properties computed with the FLAPW method (this work)
with available experimental data. Units are kJ/mole for the structural-energy difference AE/< %< ang
for the energies of sublimation, cohesion and formadon £, E,,,, E /o, respectively, and cm3/mole
and GPa forqthe equilibrium volume V, and the Bulk modulus 8. The bulk moduli are followed by the

roperty phase FLAPW | experiment
Econ i Engim Al-fce 387.2 L3224
Li-bce 164.1 , 161.1
Vo (298K) Al-fec 9.5533 9.7861
B32 9.2148 9.3849
Li-bce 11.4387 12.391
Li-fec 11.4031 12.288
AlsLi-L1, 9.4518 9.439
B Al-fec 822 (0 K) 83.3 (0 K)
75.2 (295 K)
76.6 (295 K)
77.3 (295 K)
Al4Li-L1, 70.3 (0 K) 66. (295 K)

Li-bee 1520K) 12. 295 K) |
Property phase FLAPW fitting
AE e e Al-bce 6.039 10.086
Li-bee 0.656 -1.214
Efom B32 -21.531 -15.633
-23.685
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All theoretical values reported in Table II are deduced from FLAPW calculations. Those
given in Table III required CVM calculations, in addition, and are therefore more critical test of
the overall model. As examples, we compare theoretical (this work) and experimental values of
lattice parameter variations as a function of concentration for fcc-Al and for B32.

Once again, the agreement is very good. That does not seem to be the case for the
parameter J, the misfit, at equilibrium, between Al and Al3Li. Agreement is fairly good also for
the variation of bulk modulus (in the fcc Al-rich solid solution) as a function of Li content. The
bulk modulus is seen to decrease with Li additions. It has been reported that Young's modulus
increases with Li contents [33], which means that Poisson's ratio must behave anomalously at
high Li concentradon.

Table III. A comparison of theoretical CVM predictions and experimental measurements. The change
of the lattice parameter per atomic percent lithium (da/dcy;) in nm units in the aluminum rich fcc solid
solution (fcc-Al) and the B32 phase and the change of the bulk modulus per atomic percent lithium
(0B /dcy) in GPa units in the fcc-Al phase from CVM computations (this work) and as reported in the
literature. The misfit parameter 3, in percent, given by eq. (V1.16), between the fcc-Al phase and the
AlsLi-L1, precipitates, from lattice parameters computed with the CVM (no relaxation) at 300 and 500
K, and as experimentally observed. References pertaining to the experimental data are given elsewhere

[29].

property_ ‘phase this work experiment
da/dcy; fec-Al -.000051 -.000029
-.000044
-.000069
da/dcy B32 -00022 -.00025
' -.00034
8§ (300K) fcc-AVALLLi -L1, -28 -.83
5 (500K) fcc-AVAlLLi-L1, -.19
9B /dcy; fec-Al -48 -.576

Only portions of the two-phase region & + a' have been determined experimentally. The
calculation, however, clearly shows the full metastable equilibrium, including the L13 - L1
phase boundaries. Clearly, the theoretically determined a + & region is too narrow and too far
towards high Li-content. But let us recall, once again, that the present calculation makes use of
the two atomic numbers ZAj and Z; as only input parameters. Previously calculated phase
boundaries were obtained by fitting to the experimental points. In the calculation of Sigli and
Sanchez [34], a low-lying miscibility gap was found, whereas the present calculation does not
predict such a feature. It is likely, however, that this metastable gap is a feature of the particular
fitting procedure used [34]. Khachaturyan et al. [35] also obtained portions of & + ' phase
boundaries by fitting to a "concentration wave" free energy, which is in fact the Bragg-Williams
model under a different name. Since two adjustable parameters were used, it is not surprizing
that the fitted curve passed close to the experimental points. Khachaturyan et al. failed to show
the upper portion of their calculated phase boundaries; actually, their model would predict that
both L17 and L1g ordered regions merge into a double second-order critical point at ¢ = 0.5,
which is clearly unacceptable. It is probable that the present CVM calculation could be improved
by including second neighbor EPI's in the fcc calculation. The second EPI may have appreciable
magnitude as the (sp) wave functions of both Al and Li are expected to overlap several
neighbors.

Additionally, the calculations presented here provide a fundamental understanding of the
physics underlying the phase diagram. Basically, the Al-Li thermodynamics can be viewed as
resulting from a bec-fcc competition: fcc clearly dominates on the Al side, with the fcc solid
solution and the metastable L1, fcc superstructure, whereas bcc dominates on the Li side, with
the D03 and very narrow bec Li terminal phase. Actually, Li should prefer fcc, but the cohesive
energy of bce Li is so close to fcc that beec dominates above room temperature due to vibratdonal
entropy effects. The case of B32 is intriguing. In many binaries which have fcc terminal solid
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solutions a bee superstructure is stabilized at central compositions. This is undoubtedly because
ordering is preferred on a bcc lattice compared to fcc ordering, such as L1g, which is frustrated.
Hence for given nearest neighbor EPI, the ordering transition temperature for bce ordering will
be much higher than that for fcc ordering, as observed when comparing Figs. 3 and 4. In other
words, the energy lost in "promoting” the bce over the fcc lattice is more than recovered by bec
rather than fcc ordering. That, in this system, B32 is preferred over B2 is undoubtedly due to
the longer range effective interactions expected in (sp) bonding.

CONCLUSIONS

It was shown by an example that ab initio phase diagram computations are becoming
feasible thanks to the way significant progress realized recently in combining both quantum and
statistical mechanical calculations in a highly ingrated, accurate and reliable manner. It is hoped
that, in the near future, it may be possible to accomplish the following task quite generally: given
basic information for pure A and B (and C), such as electronic structure,bulk moduli, melting
and allotropic transition temperatures, construct the corresponding A-B (or A-B-C) phase
diagram with no additional "alloy” data. In other words, what is being developed is an
interpolating scheme for predicting stable and metastable alloy phase equilibria using, as input,
only pure element parameters. Such is the first step towards a first principles thermodynamics
of materials. '
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